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Custom-Made Pyramids

Shmuel Peleg
Orna Federbusch
Robert Hummel

Abstract

Pyramids are data structures used to store and process images at . .
multiple levels of resolution. The bottom level of a pyramid is
used to represent data at a fine level of resolution, while higher
levels of the pyramid are used for data stored at coarser levels
of resolution. For example, in the Gaussian pyramid data struc-
ture, each successive level is obtained by local averaging and
subsampling of the immediately lower level in the pyramid. In
nearly all pyramid implementations to date, the size reduction in
each dimension between levels of the pyramid is a constant fac-
tor of two.

This paper describes a scheme that permits construction of py-
ramids with arbitrary size reductions between levels. The reduc-
tion factors can be different in each dimension, and differ ,,

between levels, to adapt to a given application. The user can %J .
thus specify a sequence of decreasing rectangular image sizes,
and construct pyramids conforming to those sizes. Further, the
reduction factors can be made adaptive to region propSrties, ena-
bling smooth regions to be reduced more than'"busy regions.

'. - , I .l .p_-

." / " . -',-

1. Pyramids
Pyramid data structures have proven useful in the development of image pro- I.

cessing methods dealing with image features at varying scales of resolution. A sur-
vey on pyramid structures may be found in [1]. Typical image pyramids are formed
from rectangular grid arrays whose sides have lengths that are powers of two in
extent. Thus the base level might be 512 by 512, the next level up would then be
256 by 256, and each successive level reduces each dimension by a factor of two. In
the Gaussian pyramid data structure, the reduction from one level to the next is
accomplished by blurring the lower level (by means of convolution with a non-
negative kernel) followed by a subsampling of every other pixel on every other row.
In the Burt form of the Gaussian pyramid [2), each level has size of the form 2"+1 ..

by 2" + 1, so that in the subsampling operation left and right edge pixels are included
on every second row, and that both the top and bottom rows are sampled. Nonethe- , ."

less, the sampling rate is still two, and we say that the size ratio between levels is
two in each dimension.

By subsampling every other pixel on every row and offsetting the samples by ..

one pixel on successive rows, it is possible to achieve an effective sampling ratio of

° .%4, i



Custom-Made Pyramids

V in each dimension [3]. In this pyramid scheme, every other level is in essence
located on a 45 grid, and care must be exercised when designing kernels and other
local operators on these levels. Nonetheless, the reduced reduction factor between
levels results in a better chance of capturing a salient feature at an appropriate scale
of resolution, at the cost of doubling the number of levels.

In this paper, we describe a method for constructing pyramids of arbitrary size
at each level, so that the resolution can be reduced as needed, and not only by fixed
ratios. Further, the reduction does not have to be uniform over the whole image,
and can vary based on local image properties.

The basic step in the construction of the proposed pyramid scheme is a spatial "
resampling technique used in graphics [4,5], related to anti-aliasing. We will first
describe the resampling idea in one dimension. The transformation can be applied
to rectangular grids by first sampling the rows, and then sampling the columns of
the result. We will then present a formulation of the sampling idea that permits the.-,..
construction of pyramids using arbitrary placements of pixels (such as hexagonal
grids). The central property of the sampling method is that each pixel contributes
fully to the output samples, thereby minimizing sampling artifacts.

As an introduction to the resampling methods to be defined in later sections,
consider the original sample points as "producers," and the new sample points that
form the resampled data as the "consumers." The producers and consumers have .. ,
associated positions, corresponding to the sample point locations in the domain.
The amount "produced" by each producer is pre-specified, as is the consumption
level of each consumer. The consumers obtain their products from a linear sum of
the producers, taking contributions of fixed amounts, such that the total of all con-
tributions by a given producer is the total amount produced at that site. The
"error" of a sampling can be defined as the sum over all producer-consumer pairs
of the distance between the corresponding points weighted by the contribution of the
producer to the consumer. The error is minimized when the consumers use the
closest suppliers to compute their values. The methods described below have cer-
tain optimality properties with respect to these measures, but we will not pursue the
variational derivation any further.

2. One-Dimensional Resampling
We first consider the problem of resampling a vector (vo, N- ,vp-.) of N pix-

els to a vector (wo, • ,wm-l) of M pixels. W e treat both cases M < N and
M 2 N.

2.1. Uniform Resampling
W e use the form ula '- . ',

f( l + l Dp l - 1

,......

Wi ry vj
J- [I/pi

where

Page 2r!.
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Peleg, Federbutch, and Hummel

ra( min(1, p,(p'(j+l) -i)} if [i/pJ :sj<i/p
m in{ 1, p, ( (i+1) - p.j) } if i/p : j < r(i+1)/pl

and

M

To interpret this formula, first assume that M < N, so that p is small. Then
nearly all ry for j in the appropriate range will have the value p, with the exception
of the two extreme ry's.

More generally, we can regard the output range (0,M] split up into M subinter-
vals [i, i+1], with i = 0,1, • - • , M-1. The same range is also split into N subin-
tervals [p-j, p.(j+l)], with j -= 0,1, • - • , N-1. The coefficient rj is the total
length of the portion of the interval [p-j, p.(j+l)] that intersects with the interval
[i, i+1].

For the situation with N = 4 and M = 3, to resample (vo,vl,v2,v 3) with
(wo,wl,w2) we have the formulas

3 1w0 = O + IV,

1 1 "
w1 = 'V1 + -V2

W2 = I'V2 + -V3

as shown in Figure la. Figure lb shows how the coefficients can be computed from
the overlapping intervals.

Properties of this sampling method include:
N-I

" The total contribution of any given vj to all w's is p; i.e., 7 rij P.
fiO

M-1
" The sum of all contributions to any given wi is one; i.e., X r=i 1.

j-0

w0 w1 w2

3/4 1/ 1212 14/4

Yo v I v 2  v 3

Figure Ia. Uniform resampling weights for a 4-vector to a 3-vector.
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Custom-Made Pyramids

wo W1 w2

V1 V2  T V3

3/4 !/;r 1/2 1/2 " /;r 3/4
J.p

Figure lb. Method for computing the uniform resampling weights for a 4-vector to
a 3-vector, using the overlap of the intervals at different resolutions.

2.2. Weighted Resampllng
In the uniform sampling given in the previous section, all input pixels make the

same contribution p to output pixels. We now extend the resampling to permit each
input pixel to have an adaptable "forward weight," so that pixel j, with value vj,
contributes a total of pj to the w's. These weight should satisfy the normalization
condition

N-i

jI0

reflecting the desire to have each of the M output pixels to receive unity in contribu-
tions from the v's. When P-j=MIN for all j, we have the uniform sampling of the
last section.

We use the same principle as in the previous section to develop a linear resam-
piing formula

N-1
=i i rjvj

J-0
j=0

but now rj represents the length of that portion of the interval I ,Pk, pki that
1k =0 k-0 I

intersects the interval [i, i+ 1]. Note that the input interval number j has length Pj.,
and that the input intervals subdivide the output range [0,M].

We omit the precise formulas for the igj's, but depict the situation for N = 4,
M =3, and P-o = P-i =1, P-2 P3 0.5, in Figure 2. In this case we obtain the
formulas

W0 ==I

W 1 !
V2 + V

2 2

We can formulate the general weighted resampling formulas by giving an inter-
polation formula and a sampling formula. Specifically, given a vector
(vo,vI, vN-I) and the weights (P-o, ,P-N-i), we form an interpolation

Page 4
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wO Wl W2

VO Vl V2 v3

Figure 2a. Pyramid representations of the weighted sampling with weights as in the
text.

WO WI w2
VO VI v

0 " 1 P2 - 0. " 3 r- 0.5

Figure 2b. Weighted resampling of a 4-vector to a 3-vector. %

function
N-I

f(x) =7 vi,-(x)
1=0

where

h( X) fI 1 if k :5 X < 14..
k ffO k = O "0 otherwise k.

The samples (wo ,wM-1) are then obtained from the sampling formula

=, f=f(xW*i(x)dx

where

t(x) = 1 if i--5x <i+1
tootherwise.

This formulation suggests a generalization, to which we return in the next section.

For the moment, we note that the iij's satisfy
N-I

0 The total contribution of any given vj to all w's is p.j; i.e., I rj i.
i=O

Page $
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V
M-1

S The sum of all contributions to any given wi is one; i.e., rij I .
j=0

3. Pyramid Construction
An input image of size M by N can be resampled to any desired output size K

by L using the uniform resampling method of Section 1.1, applying first a resam-
pling of the rows (which are N-vectors) to have lengths L, and then resampling the
resulting L columns (each of which are M-vectors) to have lengths K. The result is
the same if the columns are first resampled, followed by a resampling along the
resulting rows. A complete pyramid structure can be built by specifying the desired
sizes of all levels above the base level.

In Figure 3, we present an example of a three-level one-dimensional pyramid.
Note that the values in higher levels are weighted averages of bottom-level pixels,
and that the supports of the linear weighting functions can overlap in lower levels.
In the immediately preceding level in a one-dimensional pyramid, with resampling
as given in Section 1.1 or 1.2, support functions for adjacent pixels can overlap in at
most one pixel. However, the supports from lower levels can have arbitrarily large
overlaps, depending on the structure of the intermediate levels. Burt's overlapping
pyramids [2] also exhibit overlapping supports, although in the one-dimensional ver-
sion of his scheme (using five-tap filters), adjacent pixels in one level share supports
from three pixels in the immediately preceding level (see Figure 4). Successive lev-
els have larger overlaps in the base level. However, resampling using either the
uniform resampling or weighted resampling of Section 1.1 or 1.2 yields weights
determined by the sizes of the levels, and are not adjustable in the same way that
the taps in the Burt pyramid can be modified.

12 1 1 

I I

I I i I I I I14 4 X2 4 4 iI,~

6 6 b t

Figure 3. A comparison of a 4-3-2 one dimensional pyramid with a 4-2 pyramid
structure. The leftmost pyramid shows the weights in a 4-3-2 structure, while the
middle pyramid shows the effective weights from the bottom level to the top. The
rightmost pyramid gives the weights for a uniform 4-2 resampling.

',
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i

Figure 4. The Burt 5-tap pyramid.

Using the interpolation formula and sampling method formulation of resam-
pling, however, we can generalize the uniform and weighted resampling methods to
permit larger overlaps in the support functions of the resampling kernels. Rather
than defining 41j(x)'s and *j(x)'s as in Section 2.2, we instead simply assume that
the interpolation kernels 4)i(x) form a partition of unity of the domain, and that the
sampling kernels *i(x) all have unit mass. By this, we mean that

N
i-I

and

fti(x)dx = 1, for i=0, ,M.

In this case, resampling is still done by the formula wi = rjvj, but now the rij's
are given by

rij = f~i(x)4oj(x)dx.

In all cases, the total of all contributions to a given pixel from all pixels at some
given lower level will be unity.

The pyramid resampling scheme can be used for building successively smaller
size levels (as in a Gaussian pyramid), or for expanding a level to a larger image.
By combining a subsampling operation for contraction with expansion operations,
the resamplings may be used for building analogs to the Laplacian pyramid data
structure. The construction, analogous to Burt's formulation, proceeds as follows.

We specify a sequence of decreasing sizes (Ni by M,) for levels
i, i = 0, 1, -, I of a pyramid structure. Let Go be the N0 by Mo initial image.
We construct the Laplacian pyramid as a sequence of images Li of size N. by Mi, 0
i = 0, 1, • . Recursively, for i < e, G+j is obtained from Gi by resampling
from an Ni by Mi image to an Ni+I by Mi+ 1 image:

Gi+i M 7Z NjXt) .(N1+1 KM 1+1 ) (GO)

where 7" is the resampling operator. We assume, for the time being, that uniform
resampling will be used. Then Li is defined as the difference between G. and an
expansion resampling of G+ 1:

Page 7
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Custom-Made Pyramids

Li - Gi - J(N 1+ 1 x Mj+ 1 ) - (NI x M,) (G1 +j) I
Finally, at the top level, we define Le = Ge.

As with the Burt Laplacian pyramid, the original image Go can be recon-
structed exactly from the Li's using the (obvious) formulas

Gj_ 1 = Li_. 1 + "Z(Nj x M) - (lt-1 x M.- 1 ) (Gi)

Each level Li represents an approximate band-pass filtered version of the original
image, where the widths of the bands are determined by the choices of the relative
sizes of the levels. Figure 5 shows such a custom-built Laplacian pyramid structure.

Suppose that we wish to use weighted resampling in the construction of the
Laplacian pyramid. It is then desirable to invert (in some sense) the weighted
resampling that was used in the contraction from level Gi to Gj+1 for the expansion
operation in the construction of Li. The same weighted expansion should then be
used in the reconstruction of Gi using the levels Li+, , Le. A weighted expan-
sion resampling should be used (even though it is not absolutely required for exact
reconstruction) so that the levels Li maintain their approximate bandpass charac-
teristics. What weights should be used?

Assume that the data (vo,' ''viv-1) has been resampled using weights
(p0• ,pLjv-j) to obtain the M-vector (wo, ,wM-1). Recall that the resam-
pling is linear:

w,= ,jvj

j=0

The matrix coefficients ;ij represent the contribution fractions of coefficient vj to
coefficient wg. We now define the "backward weights" Pi, i =0, , M-1,
according to

N-IL

j=O IlJ
M-1

It is easy to see that , = N, so that the 3i's can serve as weights for resampling
1=0

the M-vector (wo, '',w- ) to an N-vector (vo', ,v_j'). Each 3 i
represents the sum of proportions of vj's that contributed to wi. Accordingly, the
expansion using weights ( 3o, • - 1) leads to a vector (vo', • v-I') which
best approximates (vo, • vN - 1), in the sense that there is no horizontal skew-
ing.

For example, uniform resampling of an N-vector to an M-vector corresponds to
weighted sampling where the weights are all equal to p = MIN. The backward
weights are then also all equal, and have value p- 1 = NIM. Thus uniform resam-
pling for contraction is paired with uniform resampling for expansion.

As another example, we showed in Figure 2 the weighted sampling of a 4-
vector to a 3-vector with weights (1, 1, 1/2, 1/2). The resulting backward weights
are (1, 1, 2), so that the weighted backward resampling becomes

Page 3 UI



Peleg, Federbusch, and Hummel

4

Pge 5.



Custom-Made Pyramids J

-A

:% N

Figure 5b

Figure S. A custom-built two-dimensional Laplacian pyramid with level sizes as .
marked. Levels are enlarged to full size far visibility. Figure 5a sbow the Gaussian
pyramid, while the Figure 5b contains the levels of the Laplacian pyramid. The ab-
solute value of the data is displayed, with larger values shown more darkly.

V2 W2 
.~

V2 +V3
V3 W2 21
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as depicted by Figures 6a and 6b. The total effect of the contraction followed by the
expansion is that the higher weighted nodes were exactly reconstructed, while the
lower weighted nodes were blurred.

4. Adaptive Resampling
Weighted resampling, as introduced in Section 1.2, has the advantage that

regions with "interesting" activity can be resampled more finely than "uninterest-
ing" regions. This can be accomplished (in one dimension) by giving interesting
pixels larger weights. In this Section, we suggest an interest operator for obtaining
the resampling weights, and also discuss extensions to two dimensions and irregular
tessellation grids.

4.1. One-dimensional Adaptive Pyramid

We suggest an interest operator based on the local "busyness" of the data. It
has been observed that in human perception a line with higher "busyness" seems
longer than a straight line segment [6], as in Figure 7. Here, we will use a
smoothed absolute value of the Laplacian of the data to measure "busyness." A
similar operator has been suggested for representation of intensity information by
retinal receptive fields [7). *1

.9

wo W1 W2

V, V v3

Figure 6. Backward weights associated with the weighted resampling of Figure 2. .. j

00 I 2 - 2

V0, VI
P  

V20 ~

Figure 6b. Calculation of the resampling weights using the backward weights.

Page 11
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I I I I I l I I
Figure 7. An illusory distortion in which the divided space appears longer than the
undivided space (Oppel-Dundt illusion).

Specifically, given a signal vo,vl, vN-,vp-, we compute the absolute Lapla-
cian values:

1i= v-I - 2vi + v+l ,ifi1, "- ,-2,'

and then smooth the results by any reasonable local averaging operator, extrapolate
to include the endpoints i = 0 and i = N-1, and normalize to obtain the values
Ii, i = 0, - • ,N -1. One way to accomplish the smoothing is to define an itera-
tive weighted smoothing as follows:

b0,j = 1j, I j S N-2,

b0,0 = 11.

bo,N-1 f= IN-2

and recursively set
I I. I

bt+ ,= 1 bt,-1 + I bIj + -,j+ 1 ! j5 N-2
42 4

bt+ 1,0 -Ibt,o + bl, I
4' 4'

1 3
bt+I,N-1 = b,N-2 + -bt, -i.

4' 4'

Finally, set

= N-i

Z bT,j
j=O

for some fixed integer T > 0 representing the amount of smoothing. The Pi's are
used as weights for resampling the vs.

An adaptive custom-made one-dimensional Laplacian pyramid can therefore be
easily constructed. The sizes of the levels are pre-specified. The signal data is
given, and weights are obtained from the busyness measures of that data.

Page 12
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Resampling using these weights results in the data immediately above the base
level. Recomputing new busyness measures gives new weights that can be used for
the next level resampling; continuing in this fashion yields a Gaussian pyramid with
adaptive weights. To obtain the Laplacian pyramid, each level above the base must
be expanded to the size of the previout level. This must be done using the back-
ward weights, as described in Section 3. The resulting expanded levels are differ-
enced with the Gaussian pyramid data at that level to obtain the Laplacian data.
Reconstruction from the Laplacian pyramid structure is possible, but requires that
expansion resampling using the appropriate backward weights at each level be used.
This means that the complete adaptive Laplacian pyramid data structure consists of
the Laplacian data at each level together with the backward weights needed for the
expansion resampling at each level above the base.

4.2. Two-dimensional Adaptive Pyramids

The two-dimensional case involves technical difficulties not present in the one-
dimensional case. The problems arise due to the fact that in one dimension, weights
can be converted to interval lengths to decompose the domain, whereas in two
dimensions it is not clear how to change the size of a rectangular region in relation
to a weight and still have a complete decomposition of the domain.

One solution is to resample in each dimension separately. However, if each
row or column is processed independently, then the image will lose its structure in
the sense that neither connectivity or convexity of shapes will be preserved. Since
the weights on one row may be independent and different from the weights on a
neighboring row, nearby pixels may give principle contributions to distant pixels in
the next level. Since this behavior is typically unacceptable, we suggest a scheme
where all rows and all columns use the same weights. In this case, the row weights
will be the average row vector of a busyness matrix, and the column weights will be
the average column vector of the same matrix.

Specifically, we compute a "busyness measure" by at each pixel (i,j) in the N
by M image. Suppose that we wish to resample to an N' by M' image. Then the
row weights, used to resample an M-vector to an M'-vector, are given by

N-1

J N-I M-I

X bk
1-0 k-O

and the column weights, used to resample each column N-vector to an N'-vector,
are given by

M-1N , bij

j-0
i N-I M-1 .4X Xbj

k-0 J-0

The same weights (ILo, "" ,M-) are used for resampling every row, and the
weights (vo, • • • 1) are used for resampling the columns.

Page 13
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Custom-Made Pyramids

Once again, a possible method for computing "busyness values" is to smooth
absolute values of the Laplacian of the image data.

As a trivial example, suppose that we wish to resample a 4 by 4 image to a 2
by 2 image, and that the busyness matrix has form

0000
0022
0022

0022 ,

Then the row weights are given by (0, 0, 1, 1), and the column weights are
(0, 2/3, 2/3, 2/3). The row resampling will then work as shown in Figure 8a, and ?'
the column resampling is as shown in Figure 8b. Note that the result is that the 3 by ,
2 bottom right subimage will be resampled to a 2 by 2 image, and that the other pix-
els will be ignored.

A contrasting example arises if the busyness matrix has the form
2200

2200
0022
0022

In this case, the row and column weights are both (1/2, 12, 1/2, 1/2), and the
resampling for both the rows and columns will be uniform. The non-busy quadrants
(the upper left and lower right portions) of the 4 by 4 image can not be ontracted
without distorting shapes in the remaining portions of the image.. -..

Figure 9 shows an adap~tive custom-made pyramid of an image. Note how the ,'
t" ;i."interesting regions in thme i e become stretched into larger windows at the higher

levels.

5. Irregular Tessellatons /
The non-adaptive versions of the resampling methods given in previous sec-.

tions easily extend to grid arrays other than rectangular lattices. Hexagonal grids

wo W2

V'0 ,i V2  V3 l

Figure ga. Row resampling using adaptive weights of the simple example. :"

Page 14
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"0 VI 2 V3

Figure Sb. Column resampling using adaptive weights of the simple example.

Figure 9A
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5.1. General case
In all cases, the locations of the sampling points are associated with either a

regular tessellation or irregular tessellation (a decomposition) of the image domain
into disjoint cells. Each sample vi represents its corresponding cell C,, and the
union of all such cells covers the domain. If a tessellation is not provided as part of
the sampling locations, then one can be provided by constructing the Voronoi
decomposition associated with the points [10].

Given one such decomposition of the domain, say [C 1 i}:-. and another
(perhaps coarser) decomposition, say {mD}f, then we can define a resampling of
data defined on the C -grid to the P-grid as follows.

I.

We are given an N-vector (v 0 , N ,N-I) of data, each vi representing a value
on cell Cj. We define resampled data (wo, ,wm-l) by

N-1
wi = r~

j= 1

where

r= ff4,(x,y),4j(x,y)dxdy

Here we have in mind interpolation functions *j(x,y) that are characteristic func-
tions of the corresponding cells Cj, and sampling functions that are characteristic
functions of the cells Vj normalized to have unit mass. That is,

* ffiY I if (xy)Ecj,j(x~y) =( t

0 otherwise
and

*i(x,y) = l/area(DV) if (x,y)D,,
0 otherwise

Area, of course, is measured by integration

area (Pi) = ff dxdy. '.

More general interpolation and sampling kernels can be envisioned, but the simplest
such kernels, the characteristic function of the cells as described here, should prove
adequate for effective resampling.

5.2. Polar sampling
We now discuss a special sampling, the polar sampling, which is important for

snapshot visual perception. In polar sampling, the sample points are located on the
intersections between a set of rays and a set of concentric circles. Some models of
human retinal receptor distribution describe samples points in this way, where reso-
lution falls off with the distance (eccentricity) from the fovea. Sometimes linear
fall-off of the sampling rate is assumed, which leads to placement of grid points on
concentric circles whose radii increase as log(A +kh), k i 1 2. • where A and h
are constants [9]. Placement of the circles with radii increasing exponentially (11)
and also simply increasing linearly [12] are also known (see Figure 10).
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We can consider resampling a polar grid by reducing the number of concentric
circles, or we can reduce the number of rays. When the concentric circles are
reduced, we simply resample the grid points along each ray independently of the
other rays. Resampling a ray is straightforward using the methods of Section 2.
When the number of rays is reduced, the points on each concentric circle can be
resampled independently of the other circles. To do this, the notion of one-
dimensional resampling of a line segment, as described in Section 2, has to be
extended to resampling along a circle. However, the methods of Section 2 extend
easily, using distance based on radian measure in place of one-dimensional
Euclidean distance.

If both the number of concentric circles and the number of rays are to be
reduced, we can then do the resampling first by reducing the number of circles, and
then by reducing the number of rays. As with two-dimensional resampling, this
process is unaffected if we exchange the order of resampling. Further, the optimal-
ity properties of the weights used for resampling, alluded to in Section 1, extend to
polar resampling. Indeed, because the polar grid coordinate locations can be
decomposed into a cross product of circles and rays, a separable kind of adaptive
resampling is possible for polar grid pyramids, similar to the adaptive two-
dimensional rectangular pyramids discussed in Section 4.2.

6. Summary
Using the anti-aliasing method common in computer graphics leads to an idea

for one-dimensional resampling of N points into M points. Extending this idea to
two dimensions easily establishes a method for building pyramids with arbitrary

Figure 10. Polar sampling, where sampling points are on the intersection points
between lines and circles. lie left sampling is with exponential radius growth, while
on the right the growth of the radius is linear.

Page 18
%'*

6 % A i-



Peleg, Federbusch, and Hummel

sizes specified for each level. We thus see that the use of pyramids with dimensions
given by powers of two is an unnecessary restriction on the construction of the
pyramids. The question as to what size levels are most appropriate is left
unanswered, and depends upon the application and empirical experiences.

We have also investigated the idea of adaptive resampling. The idea is easy in

one dimension, and allows for arbitrary nonlinear stretching along the line to be
resampled. We gave one particular busyness measure to use as a basis for deciding
on the stretching. In two dimensions, things are more complicated, and we
compromised by permitting only a "separable stretching," where the rows are
resampled using one set of weights, yielding the same stretching for all rows, and
then the columns are resampled using a single set of weights.

Finally, we note that the idea extends to irregular tessellations, where sample
points can be randomly placed, or placed on polar grid or hexagonal patterns.
Ideally, adaptive resampling would allow one to dynamically place additional points
in regions with high busyness, but our method does not easily extend to the case ofi adaptive placement of resample point locations in two dimensions.
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